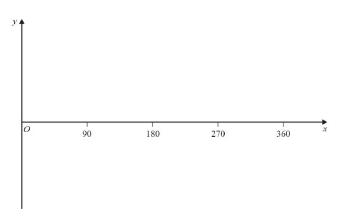
ADA PINPOINT TOPIC PACKS

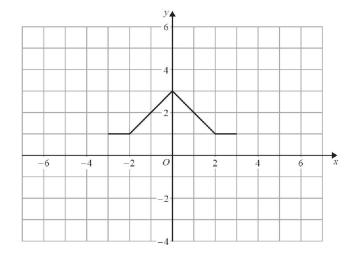
- (1)Trigonometric Graphs (1 Qns)
- (2)Trig Graphs and Solutions (NON CALC) (0 Qns)
- (3)Transformations of Functions (11 Qns)
- (4) Non to Calc Trigonometry (4 Qns)

20_to_100_Percent_Pinpoint_AI_Pack

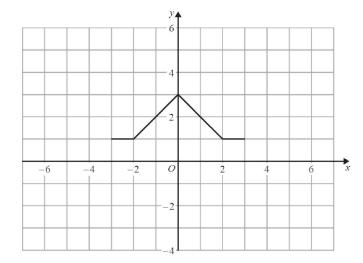
Time Allocation = 27mins, Max = 24 Marks


Calculated Grade Boundaries:

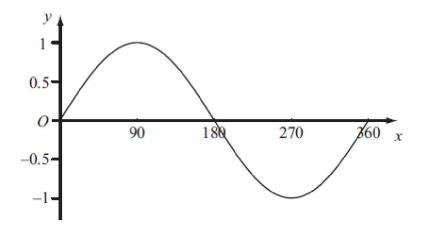
Grade	Marks
3+	2
4-	2 3 4
4	4
4+	6
5-	7
3+ 4- 4 4+ 5- 5 5+ 6-	8
5+	9
6-	11
6 6+ 7- 7	12
6+	13
7-	14
7	16
7+	17
8-	18
8	19
8+	21 22
9-	22


9	23
9+	24

Question 1 (AO1): 27% of students got this right (4 marks)


19 (a) Sketch the graph of $y = \cos x^{\circ}$ for $0 \le x \le 360$

- (b) The graph of y = f(x) is shown on both grids below.
 - (i) On this grid, draw the graph of y = -f(x)



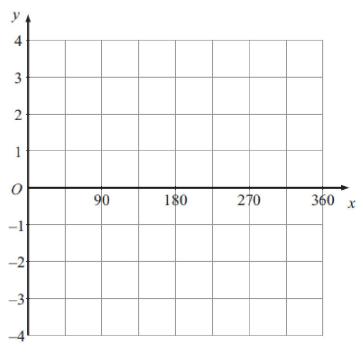
(ii) On the grid below, draw the graph of y = f(x-3)

Question 2 (AO2): (No Calc) 27% of students got this right (4 marks)

19. The diagram shows a sketch of the curve $y = \sin x^{\circ}$ for $0 \le x \le 360$

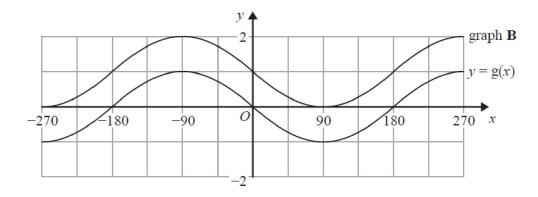
The exact value of $\sin 60^\circ = \frac{\sqrt{3}}{2}$

- (a) Write down the exact value of
 - (i) sin120°,


.....

(ii) sin 240°.

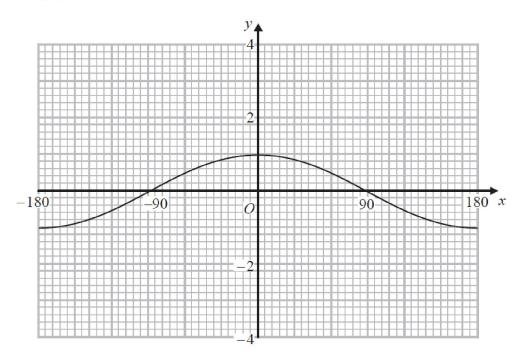
(2)



(b) On the grid below, sketch the graph of $y = \sin 2x^{\circ}$ for $0 \le x \le 360$

Question 3 (AO3): (No Calc) 23% of students got this right (1 marks)

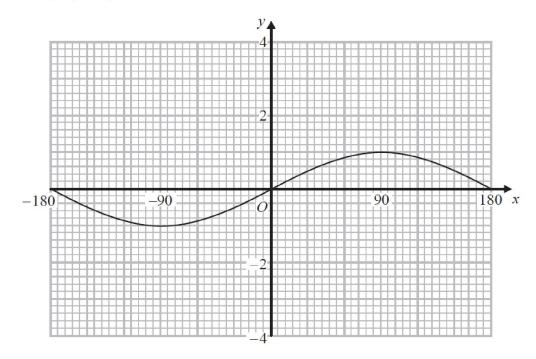
22 b The graph of y = g(x) is shown on the grid.


Graph **B** is a translation of y = g(x).

(b) Write down the equation of graph **B**.

(1)

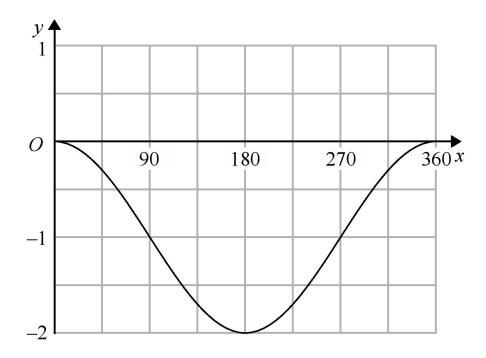
Question 4 (AO3): 21% of students got this right (4 marks)


23 Given is the graph of $y = \cos x^{\circ}$ for $-180 \le x \le 180$

(a) Sketch the graph of $y = \cos x^{\circ} - 2$ for $-180 \le x \le 180$ on the grid above.

(2)

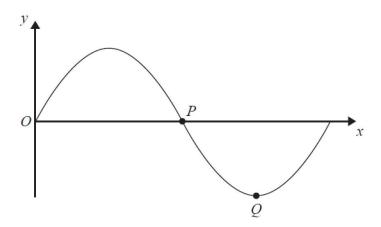
Given is the graph of $y = \sin x^{\circ}$ for $-180 \le x \le 180$


(b) Sketch the graph of $y = 2 \sin x^{\circ}$ for $-180 \le x \le 180$ on the grid above.

(2)

(Total 4 marks)

Question 5 (AO2): 14% of students got this right (2 marks)


18 Here is a sketch of the curve $y = \sin (x + a)^{\circ} + b$

Given that $0 \le a \le 360$, find the value of a and the value of b.

Question 6 (AO3): 7% of students got this right (5 marks)

26. The diagram shows part of a sketch of the curve $y = \sin x^{\circ}$.

(a) Write down the coordinates of the point P.

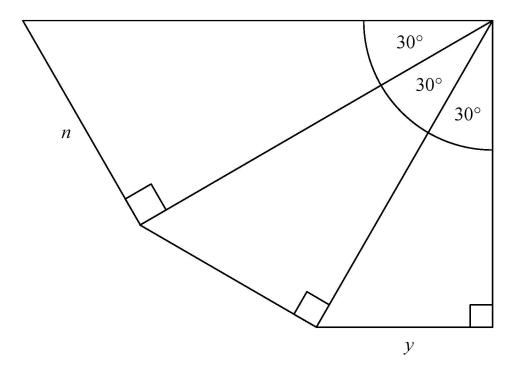
(.....)

(b) Write down the coordinates of the point Q.

Here is a sketch of the curve $y = a \cos bx^{\circ} + c$, $0 \le x \le 360$

(c) Find the values of a, b and c.

a =


b =

 $c = \dots$

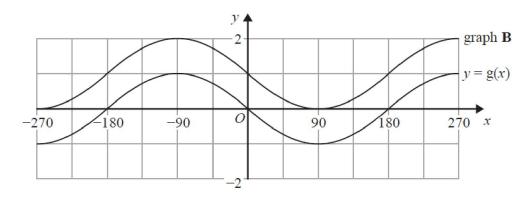
(Total for Question 26 is 5 marks)

Question 7 (AO3): (No Calc) 3% of students got this right (4 marks)

The diagram shows three right-angled triangles.

Prove that
$$y = \frac{3}{4}n$$

Answers to Qn 1 (AO1): 27% of students got this right


Paper 1MA1: 2H			
Question Working		Answer	Notes
19 (a)		sketch	B1 for correct shape for $0 \le x \le 360$
			B1 for fully correct sketch with labels
(b)(i)		sketch	B1 cao
(ii)		sketch	B1 cao

Answers to Qn 2 (AO2): (No Calc) 27% of students got this right

19.	(a)(i)	$\sqrt{3}$	2	B1 cao
		2		
	(ii)	$\sqrt{3}$		B1 cao
		$-{2}$		
	(b)		2	B2 cao
				[B1 for sine curve starting from the origin with amplitude 4,
				OR
				B1 cuts x axis at 90, 180, 270, 360 and starts from 0]

Answers to Qn 3 (AO3): (No Calc) 23% of students got this right

22 b The graph of y = g(x) is shown on the grid.

Graph **B** is a translation of y = g(x).

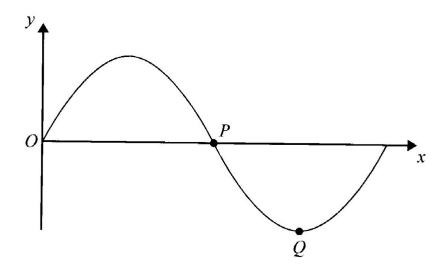
(b) Write down the equation of graph **B**.

Vertical translation: y = g(x) + 1

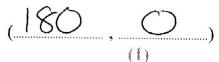
(1)

Question Order Created by Pinpoint Learnings Automatic Differentiation Algorithmn

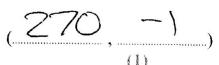
Answers to Qn 4 (AO3): 21% of students got this right

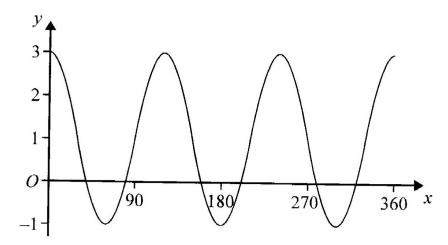

23	(a)	Graph drawn	2	B2 correct graph drawn (B1 for a graph translated up/down)
	(b)	Graph drawn	2	B2 for correct graph drawn (B1 for a graph reflected in the <i>x</i> axis or stretched by sf 2 parallel to the <i>y</i> axis)
				and y dansy

Answers to Qn 5 (AO2): 14% of students got this right


Question	Working	Answer	Mark	Notes
18		a = 90	B1	for $a = 90$
		b = -1	B1	for $b = -1$

Answers to Qn 6 (AO3): 7% of students got this right


26 The diagram shows part of a sketch of the curve $y = \sin x^{\circ}$.


(a) Write down the coordinates of the point P.

(b) Write down the coordinates of the point Q.

Here is a sketch of the curve $y = a \cos bx^{\circ} + c$, $0 \le x \le 360$

(c) Find the values of a, b and c.

Answers to Qn 7 (AO3): (No Calc) 3% of students got this right

Question	Working	Answer	Mark	Notes
20		Proof	B1	for using any correct trig value for 30°, e.g. $\sin 30 = 0.5$, $\cos 30 = \frac{\sqrt{3}}{2}$ or $\tan 30 = \frac{1}{\sqrt{3}}$
			M1	for hypotenuse of small triangle = 2y or hypotenuse of large triangle = 2n
			A1	for method to find the hypotenuse of middle triangle, e.g. $\sqrt{(2n)^2 - n^2} \ (=\sqrt{3} n)$
			A1	for a correct equation linking <i>y</i> and <i>n</i> and correct working leading to the given result